

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Course	ECE 20100 - Linear Circuit Analysis I
Type of Course	Required for the CmpE, EE, and ME programs
Catalog Description	Volt-ampere characteristics for circuit elements; independent and dependent sources; Kirchhoff's laws and circuit equations. Source transformation; Thevenin's and Norton's theorems; superposition. Step response of 1st order (RC, RL) and 2nd order (RLC) circuits. Phasor analysis, impedance calculations, and computation of sinusoidal steady state responses. Instantaneous and average power, complex power, power factor correction, and maximum power transfer. Instantaneous and average power.
Credits	3
Contact Hours	3
Prerequisite Courses	None
Corequisite Courses	MA 26100
Prerequisites by Topics	Prerequisites: Two semesters of calculus; complex numbers; computer literacy and experience with MatLab or equivalent; some familiarity with vectors and matrices. Concurrent Prerequisites: Third semester of calculus.
Textbook	<i>Electric Circuits</i> , J. W. Nilsson and S. A. Riedel, Prentice Hall, 9 th Ed., 2011.
Course Objectives	Techniques for the efficient formulation of an independent set of Kirchhoff equations, including the nodal method, the mesh method and the modified nodal method are given. The Thevenin equivalent, source transformations and superposition are studied. Simple models for the voltage amplifier and the operational amplifier are developed. The linear, time-invariant capacitor and inductor are introduced along with a complete treatment of energy storage. Transient and steady- state solutions of RC, RL and RLC circuits are emphasized, with zero, constant, or sinusoidal inputs. Sinusoidal analysis with phasors, impedance and admittance properties, instantaneous power,

	complex power, and the maximum power theorem are the final topics considered.
	 Students who successfully complete this course will have demonstrated: An understanding of the basic concepts of linear circuit elements and measurement variables (1). An ability to analyze simple resistive circuits using Ohm's law and Kirchhoff's laws (1). An ability to solve circuit problems using the techniques of mesh current, node voltage, superposition, and Thevenin/Norton equivalent circuits (1). A basic understanding of operational amplifiers (1). An understanding of inductors and capacitors as energy storage elements (1). An understanding of the natural and step responses of RL and RC circuits (1). An understanding of phasors and an ability to determine the sinusoidal steady-state response of linear circuits (1). An ability to calculate the sinusoidal steady-state power for linear circuits (1).
Lecture Topics	 Kirchhoff's Current & Voltage Laws Circuit analysis with dependent sources Nodal Analysis; nodal analysis with voltage sources Mesh Analysis; mesh analysis with current sources Modeling the voltage amplifier and the operational amplifier Thevenin and Norton equivalent circuits Energy storage elements; response to simple waveforms 1st-order circuits: transient and DC steady-state response Zero input response, natural frequencies; initial conditions 2nd-order circuits: transient response; steady-state response to sinusoidal inputs Sinusoidal analysis with phasors Impedance and admittance; Thevenin and Norton equivalents Average and complex power in the sinusoidal steady-state
Computer Usage	None
Laboratory Experience	None
Design Experience	Low
Coordinator	Hossein M. Oloomi, Ph.D.

Date

10/01/2018

Changes made

- 1. Table added
- 2. Date